Comparative Ethanol Stress Response and Membrane Fluidity in Saccharomyces and Non-Saccharomyces Yeast Strains

Elisa Aiello¹, Annalucia Caramia¹, Carlo Montanini², Luciana De Vero¹, Maria Gullo^{1,3}, Andrea Pulvirenti¹

¹Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy ²AEB group, Brescia, Italy ³NBFC, National Biodiversity Future Center, 90133 Palermo, Italy * Correspondence: elisa.aiello@unimore.it

BACKGROUND

Yeast cells are subjected to various stresses during alcoholic fermentation, including ethanol-induced stress, which can alter membrane fluidity, compromise its integrity and increase its permeability (Fig.1). Furthermore, ethanol can deactivate key enzymes, including ATPases and glycolytic enzymes, resulting in reduced cell growth [1].

Unimore Microbial Culture Collection

Figure 1. Plasma membrane modification after ethanol stress.

Commercial Name	Code	Species
Fermol Mediterranèe	PB2590 - UMCC 6	Saccharomyces cerevisiae
Fermol Blanc	PB2019 - UMCC 19	Saccharomyces cerevisiae
Fermol Rouge	PB2023 - UMCC 20	Saccharomyces cerevisiae
Fermol Red Fruit	PB2018 - UMCC 2592	Saccharomyces cerevisiae
Fermol Lime	PB2101 - UMCC 3064	Saccharomyces cerevisiae
Fermol Tropical	PB2151 - UMCC 3065	Saccharomyces cerevisiae
Fermol Fleur	PB2171 - UMCC 3066	Saccharomyces cerevisiae
Fermol Arome Plus	PB2010 - UMCC 24	Saccharomyces cerevisiae
Fermol Sauvignon	PB2530 - UMCC 263	Saccharomyces cerevisiae
Levulia Pulcherrima	MCR 24 - UMCC 15	Metschnikowia pulcherrima
Levulia Torula	BBMV3FA5 - UMCC 5	Toluraspora delbrueckii

AIM OF THE STUDY

Table 1. Yeast strains used in the current study.

This study examined ethanol's effects on growth and membrane fluidity of eleven yeast strains, including nine *Saccharomyces* and two non-*Saccharomyces* strains (Tab.1). These strains are commercialized by AEB S.p.A. and preserved at the Unimore Microbial Culture Collection (UMCC); <u>www.umcc.unimore.it</u>.

METHODS AND RESULTS

The impact of ethanol on yeast growth was assessed using selective media, while membrane fluidity was evaluated by measuring the generalized polarization of Laurdan (GP) with a spectrofluorometer, following the protocol outlined by Learmonth [2] with slight modification.

EVALUATION OF ETHANOL TOLERANCE

EVALUATION OF MEMBRANE FLUIDIT

MEMBRANE FLUIDITY

Saccharomyces strains showed increased membrane fluidity and lower GP index at 10% ethanol.

ETHANOL TOLERANCE

All Saccharomyces strains tolerated ethanol well up to 14% (v/v). Only UMCC 3066, UMCC

OUTPUTS

- Saccharomyces strains displayed robust growth even at high ethanol levels, with fluidity increasing at lower concentrations and decreasing at higher ones [3]. Strains tolerant up to 16% ethanol exhibited stable stiffening at higher concentrations, indicating better adaptability.
- Growth of non-*Saccharomyces* strains was inhibited above 10% ethanol. UMCC 5 increased fluidity at 10%, unlike UMCC 15. Both had reduced fluidity at higher levels, likely due to decreased growth [2].

This study highlights the distinct abilities of these strains to cope with ethanol stress in terms of growth

References:

[1] Lairón-Peris, María, et al. "Lipid composition analysis reveals mechanisms of ethanol tolerance in the model yeast Saccharomyces cerevisiae." Applied and environmental microbiology 87.12 (2021): e00440-21.

[2] Learmonth, Robert P. "Membrane fluidity in yeast adaptation: insights from fluorescence spectroscopy and microscopy." Reviews in fluorescence 2010. New York, NY: Springer New York, 2011. 67-93.

[3] Yang, Yijin, et al. "Membrane fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese rice wine) is variably regulated by OLE1 to offset the disruptive effect of ethanol." Applied and environmental microbiology 85.23 (2019): e01620-19.

