

AEB CARBON

Placas filtrantes para a correção de cor e dos off-flavours (sabores desagradáveis)

Descrição

O carvão ativo em pó é largamente utilizado nas indústrias alimentares e de bebidas com a finalidade de adsorção. O uso de carvão ativo em pó apresenta notáveis inconvenientes relacionados com a manipulação dos pós de carvão, com a limpeza dos equipamentos de processo bem como com o tempos e os custos associados com a remoção do próprio carvão.

As placas filtrantes AEB CARBON reduzem essas preocupações porque incorporam o carvão ativo no interior de uma matriz de fibras de celulose. Além disso, a eficiência de adsorção das placas filtrantes é maior que uma equivalente quantidade de carvão ativo em pó porque reduz os tempo total de laboração e aumenta o rendimento do produto. Um estudo comparativo com o grau de carvão mostrou uma eficiência de remoção da cor até 150% maior em relação ao PAC (*Powdered Activated Carbon*).

CARACTERÍSTICAS	VANTAGENS
Meio filtrante com carvão ativo	Ausência de pó de carvãoSimplicidade de utilização
Elevada eficiência de adsorção em relação ao PAC	 Redução do tempo total do processo Aumento do rendimento Boa permeabilidade com excelente qualidade do filtrado
Utilização na indústria de alimentos e de bebidas	Redução de custos graças à longa vida útil

Aplicações

- Redução do cloro da água
- · Correção da cor, do sabor e de odores em licores e destilados
- Descoloração de adoçantes e xaropes de açúcar
- Correção da cor nas aplicações para sumos de frutas e cerveja
- Descoloração e desodorização da gelatina

Formato disponível

400 mm x 400 mm

Valores físicos característicos

MASSA POR ÁREA UNITÁRIA (g/m²)	ESPESSURA (mm)	CINZAS (%)	PERMABILIDADE ÁGUA¹ L/m²/min (gal/ft²/min)
150	3.8	13	291 (7.2)

Estes valores foram determinados em base nos métodos internos de ensaio e nos métodos do grupo de trabalho técnico/analítico da Associação europeia para a filtração de profundidade.

Componentes

Celulose, carvão ativo em pó, terra diatomácea (DE, Kieselguhr).

Capacidade de adsorção

Com um caudal otimizado, as placas com carvão permitem obter performances maiores em relação ao PAC. Isso porque, também graças à profundidade (espessura) da placas, os fluidos do processo entram em contato de modo mais eficiente com as partículas de carvão imobilizadas no seu interior.

Os macro e os mesoporos no interior da matriz da placa são cruciais para a cinética de adsorção. Os macroporos transportam as partículas enquanto os meso e microporos são responsáveis pela adsorção. Pequenas moléculas, como o azul-de-metileno, que tem um peso molecular de 319,86 Dalton, são capturadas principalmente nos microporos.

Normalmente, são adsorvidos 20 g/m² de azul-de-metileno.

Regeneração

Dependendo da aplicação e da natureza dos contaminantes adsorvidos, as placas filtrantes AEB CARBON podem ser regeneradas através de enxaguamento com água limpa, no sentido do fluxo.

Diretrizes de filtração

O caudal típico utilizado para fluidos alimentares e bebidas é de 150-250 L/m²/h.

A AEB recomenda um ensaio inicial numa amostra a tratar.

Esterilização e higienização

MÉTODO	TEMPERATURA °C (°F)	MÁXIMA PRESSÃO DIFFERENCIAL BAR (PSI)	TEMPO / CICLO minutos
VAPOR	125 (257)	0.5 (7.2)	20
ÁGUA QUENTE	90 (194)	1 (14.5)	30

¹ A permeabilidade foi medida em condições de ensaio com água potável a 20°C (68°F) e Δp de 1 bar (14.5 psi).