

NEW-CEL

Stabilizer of tartaric precipitations

-> TECHNICAL DESCRIPTION

New-Cel is an organic polymer soluble in water, studied to give wines the tartaric stabilization during time. The stabilization of tartaric precipitations represents one of the most important problems of oenology: the treatment has a high cost and in some cases the result is not sure; common technologies have often an impact against the colour and the other organoleptic characteristics. The utilization of **New-Cel** at low doses enables to protect acidity and to obtain a perfect stability during time.

Modes of action

New-Cel comes between the crystals of potassium bitartrate which are being formed and prevents their enlargement. In wines, tartaric acid and potassium normally build crystal structures with 7 sides, that progressively enlarge starting from micro-formations, known as crystallization germs. The long polymeric chains of **New-Cel** are excellent colloidal protectors, wrap the crystal structure with a protection film, deform them and make their growth impossible.

New-Cel considerably slows down the precipitation strength and the movement of the crystals which are being formed, as it is a non-newtonian fluid whose viscosity varies according to the cut stress ("movement speed"). The wine on the contrary is a newtonian fluid, whose viscosity depends above all on temperature and its chemical composition. At low temperatures, when crystals should get insoluble, the pseudoplastic rheological nature of **New-Cel** inhibits their aggregation.

Characteristics of the preparation

In order to facilitate the dissolution of the colloidal protectors and to grant their highest effectiveness, **New-Cel** is dissolved into solutions of sterile deionized water by means of suitable emulsifying equipment with a low rotation speed.

New-Cel is composed by a high purity carboxy-methyl-cellulose, specially studied for the oenological use. Studies carried out by the AEB showed that the best results on wine stability are obtained with the utilization of cellulose derivatives with a substitution degree around 1 (relation between the number of carboxylated groups and glucose units). Its polymerization degree (average number of glycosidic units per molecule) is ideal to slow down the crystals approach strengths.

-> COMPOSITION AND TECHNICAL CHARACTERISTICS

Watery solution of carboxymethylcellulose stabilized/conserved with citric acid, *potassium bisulfite* (100 g/hL bring about 3,5 mg/L of SO₂).

TECHNICAL DATASHEET

NEW-CEL

→ DOSAGE

100-500 g/hL.

Verify that the dosage is adequate by testing the cold stability after the addition of the agent.

-> INSTRUCTIONS FOR USE

Wines must be protein stabilised before being treated and must be free of turbidity. Directly disperse the solution into the wine while pumping over.

-> STORAGE AND PACKAGING

Store in a cool and dry place, away from direct sunlight and heat.

5 kg net drums in 20 kg boxes. 25 kg net drums.